Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses.
نویسندگان
چکیده
Methyl jasmonate is a plant volatile that acts as an important cellular regulator mediating diverse developmental processes and defense responses. We have cloned the novel gene JMT encoding an S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT) from Arabidopsis thaliana. Recombinant JMT protein expressed in Escherichia coli catalyzed the formation of methyl jasmonate from jasmonic acid with K(m) value of 38.5 microM. JMT RNA was not detected in young seedlings but was detected in rosettes, cauline leaves, and developing flowers. In addition, expression of the gene was induced both locally and systemically by wounding or methyl jasmonate treatment. This result suggests that JMT can perceive and respond to local and systemic signals generated by external stimuli, and that the signals may include methyl jasmonate itself. Transgenic Arabidopsis overexpressing JMT had a 3-fold elevated level of endogenous methyl jasmonate without altering jasmonic acid content. The transgenic plants exhibited constitutive expression of jasmonate-responsive genes, including VSP and PDF1.2. Furthermore, the transgenic plants showed enhanced level of resistance against the virulent fungus Botrytis cinerea. Thus, our data suggest that the jasmonic acid carboxyl methyltransferase is a key enzyme for jasmonate-regulated plant responses. Activation of JMT expression leads to production of methyl jasmonate that could act as an intracellular regulator, a diffusible intercellular signal transducer, and an airborne signal mediating intra- and interplant communications.
منابع مشابه
Overexpressing Arabidopsis jasmonic acid carboxyl methyltransferase (AtJMT) results in stimulation of root growth and ginsenoside heterogeneity in Panax ginseng
Methyl jasmonate (MeJA) triggers the production of secondary metabolites in plants and participates in a diverse range of plant developmental processes. MeJA is derived from jasmonic acid (JA) via the octadecanoid pathway and the reaction is catalyzed by jasmonic acid carboxyl methyltransferase (JMT). In this study, transgenic Panax ginseng roots were constructed to express an Arabidopsis jasmo...
متن کاملBiosynthesis and Action of Jasmonates in Plants.
Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from lin...
متن کاملMolecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa).
Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus tr...
متن کاملThe Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants.
The phytotoxic principle, coronatine, which is present in several pathovars of the plant pathogen, Pseudomonas syringae was shown to be highly active in completely different, jasmonate-selective bioassays. At nanomolar to micromolar concentrations, coronatine induced the accumulation of defense-related secondary metabolites in several plant cell cultures, induced transcript accumulation of the ...
متن کاملBasic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.
Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic heli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 8 شماره
صفحات -
تاریخ انتشار 2001